1.十万火急!!!!关于化学!!拜托了!!! 悬赏分:200

2.伯顿和霍德里先后创裂化和裂解是?

3.三次发现石油效用都有哪些作用?

4.四氟二溴乙烷有什么用?

5.四乙基铅的主要用途

6.“海洋元素”指什么元素?

12二溴乙烷可作汽油抗_12二溴乙烷是液体吗

Ⅰ.(1)按组装仪器的顺序从下到上,从左到右,连接好装置后,注意先检验装置气密性,再装入碎瓷片和石油进行蒸馏,正确操作顺序为:EFDACBG,

故答案为:EFDACBG;

(2)①温度计水银球应处于蒸馏烧瓶支管口处,不应插入溶液;

②冷凝管中凝水的流向错误,冷水应从下口进,上口出,

故答案为:①温度计水银球应处于蒸馏烧瓶支管口处;②冷却水的方向通反了;

Ⅱ.乙烯和溴发生加成反应生成1,2-二溴乙烷,化学方程式为CH2═CH2+Br2→CH2BrCH2Br,

故答案为:CH2═CH2+Br2→CH2BrCH2Br.

十万火急!!!!关于化学!!拜托了!!! 悬赏分:200

农药可以用来杀灭昆虫、真菌和其他危害作物生长的生物。 最早使用的农药有滴滴涕、六六六等[2] 它们能大量消灭害虫。但它们的稳定性好,能在环境中长期存在,并在动植物及人体中不断积累,为此被淘汰。 后来改用有机磷农药,如敌敌畏等,替代最初的农药。 然而它们含有磷元素,容易造成水生物富营养化。近年来,一批高效低毒的农药出现,现在人们已经找到了具有专一性的农药,即激素类农药。

农药广义的定义是指用于预防、消灭或者控制危害农业、

农药常用系列 (26张)

林业的病、虫、草和其他有害生物以及有目的地调节、控制、影响植物和有害生物代谢、生长、发育、繁殖过程的化学合成或者来源于生物、其他天然产物及应用生物技术产生的一种物质或者几种物质的混合物及其制剂。狭义上是指在农业生产中,为保障、促进植物和农作物的成长,所施用的杀虫、杀菌、杀灭有害动物(或杂草)的一类药物统称。特指在农业上用于防治病虫以及调节植物生长、除草等药剂。

根据原料来源可分为有机农药、无机农药、植物性农药、微生物农药。此外,还有昆虫激素。根据加工剂型可分为粉剂、可湿性粉剂、可溶性粉剂、乳剂、乳油、浓乳剂、乳膏、糊剂、胶体剂、熏烟剂、熏蒸剂、烟雾剂、油剂、颗粒剂和微粒剂等。大多数是液体或固体,少数是气体。

植物性农药属生物农药范畴内的一个分支。它指利用植物所含的稳定的有效成分,按一定的方法对受体植物进行使用后,使其免遭或减轻病、虫、杂草等有害生物为害的植物源制剂。各种植物性农药通常不是单一的一种化合物,而是植物有机体的全部或一部分有机物质,成分复杂多变,但一般都包含在生物碱、糖苷、有毒蛋白质、挥发性香精油、单宁、树脂、有机酸、酯、酮、萜等各类物质中。从广义上讲,富含这些高生理活性物质的植物均有可能被加工成农药制剂,其数量和物质类别丰富。

植物生长调节剂

定义:人工合成的对植物的生长发育有调节作用的化学物质称为植物生长调节剂。[4]

植物生长调节剂复硝酚钠

植物生长调节剂,是用于调节植物生长发育的一类农药。人们通过特定的植物生长调节剂,对植物进行促进、抑制、延缓等多种调节活动,让植物按照人类需要的方向去生长发育。

例如,人们通过延缓剂让小麦的茎秆更矮更健壮,以增强其抗倒伏能力;人们通过促进剂促使营养物质更多的向果实运输,培养个大味甜的西瓜;人们通过抑制剂来抑制土豆发芽,延长储存期等。

植物生长调节剂的特性有别于传统农药。区别于传统农药的高毒、高残留、易产生抗药性等缺点,植物生长调节剂具有见效快、用量少、低毒、高效、不易残留、不易产生抗药性等优点。这使得植物生长调节剂的市场前景和未来作用十分被看好。在国内外农药领域,对植物生长调节剂的科研和应用,也占据了越来越重要的份额。

市场上,使用范围较广的植物生长调节剂有:复硝酚钠、萘乙酸钠、胺鲜酯、调环酸钙、多效挫、矮壮素等。

除草剂

标题:除草剂

类别: 农药

主题词或关键词:农药

栏目关键词: 农药 除草剂

用以消灭或控制杂草生长的农药被称为除草剂。农田化学除草的开端可以上溯到19世纪末期,在防治欧洲葡萄霜霉病时,偶尔发现波尔多液能伤害一些十字花科杂草而不伤害禾谷类作物;法国、德国、美国同时发现硫酸和硫酸铜等的除草作用,并用于小麦等地除草。有机化学除草剂时期始于1932年选择性除草剂二硝酚的发现。20世纪40年代2,4-滴的出现,大大促进了有机除草剂工业的迅速发展。11年合成的草甘磷,具有杀草谱广、对环境无污染的特点,是有机磷除草剂的重大突破。加之多种新剂型和新使用技术的出现,使除草效果大为提高。1980年时世界除草剂已占农药总销售额的41%,超过杀虫剂而跃居第一位。之后,世界除草剂发展渐趋平稳,主要发展高效、低毒、广谱、低用量的品种,对环境污染小的一次性处理剂逐渐成为主流。

除草剂可按作用方式、施药部位、化合物来源等多方面分类。氯酸钠、硼砂、砒酸盐、三氯醋酸对于任何种类的植物都有枯死的作用,但由于这些均具有残留影响,所以不能应用于田地中。选择性除草剂特别是硝基苯酚、氯苯酚、氨基甲酸的衍生物多数都有效,其中有O-异丙基-N-苯基氨基甲酸[O-isopropy-N-phe-nylcarbamate,缩写IPC:C6H5NHCOOCH-(CH3)2],二硝基-O-甲酚钠(sodium dinitro-O-cresylate)等。具有生长素作用的除草剂最著名的是2,4-D,认为它能打乱植物体内的激素平衡,使生理失调,但对禾本科以外的植物却是一种很有效的除草剂。一般认为这种选择性是决定于植物的种类对2,4-D解毒作用强度的大小,或者由于2,4-D的浓度因植物种类的不同而有差异。

乙草胺

英文通用名:Acetochlor

中文通用名:乙草胺

其他英文名:Hsrness

其他中文名:乙基乙草安,禾耐斯,消草安

化学名称:2,-乙基-6,-甲基-N-(乙氧甲基)-2-氯代乙酰替苯胺

分子式:C14H20ClNO2

农药类别:除草剂

理化性质:蓝紫色油,熔点0℃,蒸气压4.53nPa (25 ℃),沸点162℃/7mmHg,比重1.1358(20℃),水中溶解度223mg/L(25 ℃),溶解在多种有机溶剂中。20℃时期年内不分解。

CA登记号:34256-82-1

结构式:

甲草胺

英文通用名:alachlor

中文通用名:甲草胺

其他英文名:Lasso,Otraxal,CP50144

其他中文名:拉索,澳特拉索,草不绿,杂草锁

化学名称:α-氯代-2,6,-二乙基-N-甲氧基甲基乙酰替苯胺

分子式:C14H20ClNO2

农药类别:除草剂

理化性质:原药为乳白色晶体,熔点39.5-41.5 ℃,沸点100℃(0.02mmHg),蒸气压2.9mPa(25℃) ,比重1.133(25 ℃),水中溶解度 242mg/L(25 ℃),能溶于乙醇、、丙酮、氯仿等有机溶剂,分解温度105 ℃,在强酸强碱条件下分解。

CA 登记号:152-60-8

结构式:

丁草胺

英文通用名:Butachlor

中文通用名:丁草胺

其他英文名:Machete

其他中文名:马歇特,灭草特,去草胺,丁草锁

化学名称:2,6-二乙基-N-(丁氧甲基)-氯乙酰替苯胺

分子式:C17H26ClNO2

农药类别:除草剂

理化性质:琥珀色液体,熔点-5 ℃,沸点156℃/0.5mmHg,蒸气压0.6mPa(25 ℃),比重1.070(25℃),对钢腐蚀,溶于大多有机溶剂,包括醋酸乙酯、丙酮、乙醇、苯、已烷等,165℃时分解,对光稳定。

CA 登记号:23184-66-9

结构式:

莠去津

英文通用名:atrazine

中文通用名:莠去津

其他英文名:Atranex

其他中文名:阿特拉津,莠去尽,阿特拉嗪,园保净

化学名称:2-氯-4-乙胺基-6-异丙氨基-1,3,5-三嗪

分子式:C8H14ClN5

农药类别:除草剂

理化性质:纯品为白色粉末,熔点175.8℃,蒸气压0.039mPa(25 ℃),密度1.187(20 ℃),20 ℃ 时的溶解度为:水33mg/L 、氯仿 28g/L 、丙酮 31g/L 、乙酸乙酯 24g/L 、甲醇15g/L。在中性、弱酸、弱碱介质中稳定。

CA 登记号:1912-2-9

结构式:

2,4-D丁酯

英文通用名:2,4-D

中文通用名:2,4-滴

其他英文名:Esteron

化学名称:2,4-二氯苯氧基乙酸

分子式:C8H6Cl2O3

农药类别:除草剂

理化性质:纯品为无色油状液体,沸点169℃/2mmHg,比重1.2428,原油为褐色液体,20℃时比重1.21,沸点146-147℃,难溶于水,易溶于多种有机溶剂,挥发性强,遇碱分解。

CA 登记号:94-80-4

结构式:

异丙甲草胺

英文通用名:Metolachlor

中文通用名:异丙甲草胺

其他英文名:Dual,Bicep,Milocep

其他中文名:都尔,稻乐思

化学名称:2-乙基 6-甲基-N-(1,-甲基-2,甲氧乙基)氯代乙酰替苯胺

分子式:C15H22ClNO2

农药类别:除草剂

理化性质:无色到浅褐色液体,沸点 100 ℃、0.001mmHg、蒸气压4.2mPa(25 ℃),密度1.12(20℃),溶解度水488mg/L(25℃),与苯、二甲苯、甲苯、辛醇和二氯甲烷、己烷、二甲基甲酰胺、甲醇、二氯乙烷混溶,不溶于乙二醇、丙醇和石油醚,300℃以下稳定,强酸、强碱下和强无机酸中水解。

CA 登记号:51218-45-2

结构式:

扑草净

英文通用名:Prometryn

中文通用名:扑草净

其他英文名:Gesagard,Caparol,Merkazin,Polisin,Prometrex

其他中文名:扑蔓尽,割草佳,扑灭通

化学名称:4,6-双(异丙氨基)-2-甲硫基-1,3,5-三嗪

分子式:C10H19N5S

农药类别:除草剂

理化性质:白色粉末,熔点118-120 ℃,蒸气压0.169mPa(25℃)(OEOD-104),密度 1.157(20℃),溶解度水33mg/L(25 ℃),丙酮300,乙醇140,己烷6.3,甲苯200,正己醇110(g/L,25℃),20℃中性介质,微酸和微碱介质中稳定,热酸和碱中水解,紫外光下分解,pKb9.9。

CA 登记号:7287-19-6

结构式:

二甲戊灵

英文通用名:Pendimethalin

中文通用名:二甲戊灵

其他英文名:Stomp,Penoxalin,Prowl,Herbadox

其他中文名:除草通,二甲戊乐灵,施田补,胺硝草

化学名称:N-(1-乙基丙基)-2,6-二硝基-3,4二甲基苯胺

分子式:C13H19N3O4

农药类别:除草剂

理化性质:橙色晶状固体,熔点 54-58℃,沸点为蒸馏时分解,蒸气压4.0mPa(20℃),密度1.19(25℃),Kow152000,溶解度水0.3mg/L(20℃),丙酮700,二甲苯628,玉米油148,庚烷138,异丙醇77(g/L,26℃),易溶于苯、甲苯、氯仿、二氯甲烷、微溶于石油醚和汽油中,5-130℃贮存稳定,对酸碱稳定,光下缓慢分解,DT50水中小于21天。

CA 登记号:40487-42-1

结构式:

百草枯

英文通用名:Paraquat

中文通用名:百草枯

其他英文名:Gramoxone

其他中文名:克芜踪,对草快

化学名称:1,1,-二甲基-4,4,联吡啶阳离子

分子式:C12H14N2Cl2

农药类别:除草剂

理化性质:无色,吸湿性晶体,熔点约300℃(分解),蒸气压<0.1mPa,密度1.24-1.26(20℃),溶解度700g/L(20℃),几乎不溶于大多数有机溶剂,中性和酸性介质中稳定,在碱性介质中迅速水解 ,在水溶液中、紫外光照下发生分解。

CA 登记号:4685-14-7

结构式:

精喹禾灵

英文通用名:Quizalofop-p-ethyl

中文通用名:精喹禾灵

其他英文名:NC302D(+),Assurell,Pilot,super,Tarqa,super

其他中文名:精禾草克

化学名称:R-2-[4-(6-氯喹喔啉-2-基氧)苯氧基]

分子式:C19H17ClN2O4

农药类别:除草剂

理化性质:淡褐色结晶,熔点76-77℃,沸点220/26.6Pa,密度1.35g/cm2,蒸气压110nPa(20℃),溶解度0.4mg/L(20℃),溶剂中溶解度(20℃),丙酮650,乙醇22,己烷5,甲苯360(g/L,20℃),PH9时半衰期20h,酸性、中性介质中稳定,碱中不稳定。

CA 登记号:100646-51-3

结构式:

2甲4氯

英文通用名:MCPA

中文通用名:2甲4氯

其他英文名:2,4MCPA

化学名称:2-甲基-4-氯苯氧乙酸

分子式:C9H8Cl103-Na

农药类别:除草剂

理化性质:无色结晶,熔点119-120.5℃,蒸气压2.3*10(-5) Pa(25℃),溶解度水734mg/L(25℃) 、乙醇1530、770、甲醇26.5.二甲苯49.庚烷5g/L(25℃)。

CA 登记号:94-74-6

结构式:

咪唑乙烟酸

英文通用名:Imazethapyr

中文通用名:咪唑乙烟酸

其他英文名:Pivot,Pursuit

其他中文名:普杀特,咪草烟,豆草唑,普施特,灭草烟

化学名称:5-乙基-2-(4-异丙基-4-甲基-5-氧代-2-咪唑啉-2-基)-2-吡啶羧酸

分子式:C15H19N3O3

农药类别:除草剂

理化性质:无色结晶,无臭味,熔点169-174℃,蒸气压<0.013mPa(60℃),25℃溶解度水1.4g/L,丙酮48.2.二氯甲烷185.二甲亚枫422.庚烷0.9g/L、甲醇105g/L、异丙醇17g/L、甲苯4g/L,日光下迅速降解。

CA 登记号:81385-77-5

结构式:

氟磺胺草醚

英文通用名:Fomesafen

中文通用名:氟磺胺草醚

其他英文名:Flex,PP021

其他中文名:虎威,北极星,氟磺草,除豆莠

化学名称:5-[2-氯-4-(三氟甲基)苯氧基]-N-(甲基磺酰基)-2-硝基苯酰胺

分子式:C15H10ClF3N2O6S

农药类别:除草剂

理化性质:无色晶体,熔点220-221℃,蒸气压<0.1mPa(50℃),密度1.28g/ml(20℃),溶解度水(mg/l,20 ℃)约50, <10(PH1-2),>600(PH7)(20℃,mg/l),50℃下保存6个月以上,见光分解,酸碱介质中不易水解。

CA 登记号:72178-02-0

结构式:

异恶草松

英文通用名:clomazone

中文通用名:异恶草松

其他英文名:Dimethazon

其他中文名:广灭灵

化学名称:2-(2-氯苄基)-4,4-二甲基异恶唑-3-酮

分子式:C12H14ClNO2

农药类别:除草剂

理化性质:无色透明至浅褐色粘稠液体,熔点25℃,沸点275℃,密度1.129(20℃),蒸气压19.2mPa(25℃),水中溶解度1.1g /l(25℃) ,可与丙酮、乙腈、氯仿、环己酮、二氯甲烷、甲醇、甲苯等相混。常温下贮存至少2年, 50℃可保存3个月。

CA 登记号:81777-89-1

结构式:

草除灵

英文通用名:Benazoline-ethyl

中文通用名:草除灵

其他英文名:Galtak,Cornox

其他中文名:高特克,乙酯

化学名称:4-氯-2-氧代-3(2H)苯并噻唑乙酯

分子式:C11H10ClNO3S

农药类别:除草剂

理化性质:无色晶体固体,熔点79.2℃,蒸气压0.37mPa(25℃),密度1.45(20℃),溶解度(20℃), 水47mg/L,丙酮229mg/L,二氯甲烷603mg/L,乙酸乙酯148mg/L,甲醇28.5mg/L,甲苯198mg/L,300℃以下以及酸和中性溶液中稳定。

CA 登记号:3813-05-6

拒食胺编辑

拒食胺是原药为乳白色晶体,熔点39.5-41.5℃,沸点100℃(0.02mmHg),蒸气压2.9mPa(25℃),比重1.133(25℃),水中溶解度242mg/L(25℃),能溶于乙醇、、丙酮、氯仿等有机溶剂,分解温度105℃,在强酸强碱条件下分解。

行业运行情况编辑

我国农药市场发展迅速,行业总体呈现良好发展态势,已发展成为全球第二大农药生产国,2012年,中国化学农药原药(折有效成分100%)产量达354.9万吨,同比增长34.0%,为农业生产提供了重要支持。[1]

国际农药市场呈寡头垄断格局,发达国家农药生产企业市场份额约占九成。当前我国农药生产企业约2000多家,产能较为分散,企业规模普遍较小,研发能力较弱,没有自己的核心竞争力。小型企业多数主要生产专利到期的产品,利润低,负担重,与世界各国差距较大。

通过兼并重组、产品结构调整以及产能扩张等方式,中国本土企业实力不断增强,涌现出了一批具有示范带头作用的龙头企业。同时,中国企业也越来越重视和加大投入自主科技创新能力,对新兴的生物农药、低毒农药、植物生长调节剂等科技含量高的项目,也取得了不少令人瞩目的成绩。

使用方法编辑

一、粉剂。粉剂不易溶于水,一般不能加水喷雾,低浓度的粉剂供喷粉用,高浓度的粉剂用作配制毒土、毒饵、拌种和土壤处理等。粉剂使用方便,工效高,宜在早晚无风或风力微弱时使用。

二、可湿性粉剂。吸湿性强,加水后能分散或悬浮在水中。可作喷雾、毒饵和土壤处理等用。

三、可溶性粉剂(水溶剂)。可直接对水喷雾或泼浇。

四、乳剂(也称乳油)。乳剂加水后为乳化液,可用于喷雾、泼浇、拌种、浸种、毒土、涂茎等。

五、超低容量制剂(油剂)。是直接用来喷雾的药剂,是超低容量喷雾的专门配套农药,使用时不能加水。

六、颗粒剂和微粒剂。是用农药原药和填充剂制成颗粒的农药剂型,这种剂型不易产生药害。主要用于灌心叶、撒施、点施、拌种、沟施等。

七、缓释剂。使用时农药缓慢释放,可有效地延长药效期,所以,残效期延长,并减轻污染和毒性,用法一般同颗粒剂。

八、烟剂。烟剂是用农药原药、燃料、氧化剂、助燃剂等制成的细粉或锭状物。这种剂型农药受热汽化,又在空气中凝结成固体微粒,形成烟状,主要用来防治森林、设施农业病虫及仓库害虫。

[5] 。

出口运输编辑

国内运输

一、凡危险性低于国家标准《危险货物品名表》(GB12268-2005)农药条目包装类别Ⅲ标准的农药产品(含农药登记为低毒、微毒产品),按普通货物管理。

二、对列入上述标准农药条目包装类别Ⅲ的农药产品(含农药登记为中等毒产品),其内容器所盛装农药重量或容量在5kg或5L以内且每包件重量不超过30kg的,同时具有符合国家标准《农药包装通则》(GB3796-2006)规定要求的包装容器和内容器,按普通货物管理,但须在有关运输文件货物说明中注明“有限数量”或“限量”一词;同时,在包件外表面的一个菱形框内标明内装物的联合国编号(前加字母“UN”)和“Ⅲ”(即包装类别Ⅲ),“Ⅲ”标在联合国编号下侧,见附件一《农药限量产品包件外表面标志内容的说明》。另外,在按限量要求对农药进行包装时,应确保同一外容器的内装物不会因渗漏而发生危险反应。

三、对包装类别Ⅰ、Ⅱ的农药产品(含农药登记为剧毒、高毒产品)以及不符合限量标准及包装要求的包装类别Ⅲ的农药产品,仍按危险货物管理。

⒌农药安全间隔期。为了保证农产品质量安全,在农药使用中必须注意农药的安全间隔期,即最后一次施药至作物收获时所要间隔的天数,也就是收获前禁止使用农药的日期。在安全间隔期内施药,才能保证农药残留量不超标,才能保证农产品的质量安全。不同的农药有不同的安全间隔期,使用时应按农药标签规定执行。

⒍安全防护。农药是有毒品,在使用过程中时刻注意对自身的安全防护,防止引起人员中毒。要穿戴必要的防护服、口罩等防护用具;施药期间禁止吸烟、进食和饮水;施药时,要站在上风向,实行作物隔行施药;施药后及时更换服装,清洗身体。

⒎废液处理。施药后,剩余的药液及洗刷喷雾器用的废水应妥善处理,不能随意乱倒,要注意对环境的保护。

⒏另外,对农药的使用,还应该根据具体农药特性,取不同的喷施方式。比如:植物生长调节剂中的复硝酚钠和脱落酸。复硝酚钠只在温度15℃以上才能快速起效,所以大家应该在气温较高时进行喷施。脱落酸见光易分解,所以在使用过程中,一定要避免光线照射。[7]

9.全面禁止使用的农药(23种):六六六(HCH),滴滴涕(DDT),毒杀芬,二溴氯丙烷,杀虫脒,二溴乙烷(EDB),除草醚,艾氏剂,狄氏剂,汞制剂, 砷类,铅类,敌枯双,氟乙酰胺,甘氟,毒鼠强,氟乙酸钠,毒鼠硅,甲胺磷,对硫磷,甲基对硫磷,久效磷,磷胺。

10.限制使用的农药(18种):禁止氧乐果在甘蓝上使用;禁止三氯杀螨醇和氰戊菊酯在茶树上使用;禁止丁酰肼(比久)在花生上使用;禁止特丁硫磷在甘蔗上使用;禁止甲拌磷,甲基异柳磷,特丁硫磷,甲基硫环磷,治螟磷,内吸磷,克百威,涕灭威(山东“毒生姜”的主角),灭线磷,硫环磷,蝇毒磷,地虫硫磷,氯唑磷,苯线磷在蔬菜、果树、茶叶、中草药材上使用。

伯顿和霍德里先后创裂化和裂解是?

你哪条

中文名称: 氯乙烷 英文名称: chloroethane 中文名称2:乙基氯 英文名称2:ethyl chloride CAS No.: 75-00-3 分子式: C2H5Cl 分子量: 64.52 理化特性 主要成分: 纯品 外观与性状: 无色气体,有类似醚样的气味。 熔点(℃): -140.8 沸点(℃): 12.5 相对密度(水=1): 0.92 相对蒸气密度(空气=1): 2.20 饱和蒸气压(kPa): 53.32(-3.9℃) 燃烧热(kJ/mol): 1349.3 临界温度(℃): 187.2 临界压力(MPa): 5.23 辛醇/水分配系数的对数值: 1.54 闪点(℃): -43(O.C) 引燃温度(℃): 510 爆炸上限%(V/V): 14.8 爆炸下限%(V/V): 3.6 溶解性: 微溶于水,可混溶于多数有机溶剂。

主要用途

要用作四乙基铅、乙基纤维素及乙基咔唑染料等的原料。也用作烟雾剂、冷冻剂、局部剂、杀虫剂、乙基化剂、烯烃聚合溶剂、汽油抗震剂等。还用作聚丙烯的催化剂,磷、硫、油脂、树脂、蜡等的溶剂。农药、染料、医药及其中间体的合成。

健康危害

有刺激和作用。高浓度损害心、肝、肾。吸入2%~4%浓度时可引起运动失调、轻度痛觉减退,并很快出现知觉消失,但其刺激作用非常轻微;高浓度接触引起,出现中枢抑制,可出现循环和呼吸抑制。皮肤接触后可因局部迅速降温,造成冻伤。 燃爆危险: 本品易燃,具刺激性。

氯乙烯又名乙烯基氯(Vinyl chloride)是一种应用于高分子化工的重要的单体,可由乙烯或乙炔制得。为无色、易液化气体,沸点-13.9℃,临界温度142℃,临界压力5.22MPa。氯乙烯是有毒物质,肝癌与长期吸入和接触氯乙烯有关。它与空气形成爆炸混合物,爆炸极限4%~22%(体积),在压力下更易爆炸,贮运时必须注意容器的密闭及氮封,并应添加少量阻聚剂。

CAS No.: 75-01-4 分子式: C2H3Cl 结构式: CHCl=CH2 分子量: 62.50 有害物成分 含量 CAS No. 氯乙烯 ≥99.99% 75-01-4 主要成分: 含量: 纯度≥99.99%。 外观与性状: 无色、有醚样气味的气体。 pH:无意义 熔点(℃): -159.8 沸点(℃): -13.4 相对密度(水=1): 0.91 相对蒸气密度(空气=1): 2.15 饱和蒸气压(kPa): 346.53(25℃) 燃烧热(kJ/mol): 无资料 临界温度(℃): 142 临界压力(MPa): 5.60 辛醇/水分配系数的对数值: 1.38 闪点(℃): 无意义 引燃温度(℃): 415 爆炸上限%(V/V): 31.0 爆炸下限%(V/V): 3.6

聚氯乙烯的结构式为[CH2-CHCl]n,是由氯乙烯单体通过自由基聚合而成的一种聚合物,英文名polyvinyl chloride,缩写为PVC。聚氯乙稀树脂为白色或浅**粉末,透明度胜于聚乙烯、聚丙烯,差于聚苯乙烯。它是世界上使用量最大的树脂之一,价格便宜,应用广泛, 其制品形式十分丰富,可分为硬聚氯乙烯、软聚氯乙烯、聚氯乙烯糊三大类。硬聚氯乙烯的硬度高于低密度聚乙烯,而低于聚丙烯,在屈折处会出现白化现象。主要用于管材、门窗型材、片材等挤出产品,以及管接头、电气零件等注塑件和挤出吹型的瓶类产品,它们约占聚氯乙烯65%以上的消耗。软聚氯乙烯主要用于压延片、汽车内饰品、手袋、薄膜、标签、电线电缆、医用制品等。聚氯乙烯糊约占聚氯乙烯制品的10%,主要用产品有搪塑制品等。

PVC粉状树脂可以按照粉状树脂的结构不同分为紧密型和疏松型两种:紧密型呈乒乓球状,吸收增塑剂的能力低,主要用于硬质PVC制品的生产;疏松型呈棉花团状,可大量吸收增塑剂,常用于软质PVC的生产。

聚氯乙稀有较好的电气绝缘性能,可作低频绝缘材料,其化学稳定性也好。由于聚氯乙稀的热稳定性较差,长时间加热会导致分解,放出HCL气体,使聚氯乙稀变色,所以其应用范围较窄,使用温度一般在-15~55度之间。

PVC按分子量的大小可分为通用型和高聚合度型两大类。通用型PVC的平均聚合度为500~1800,高聚合度型PVC的平均聚合度则大于1800。常用的PVC树脂大多为通用型。

1.PVC一般软制品。

利用挤出机可以挤成软管、电缆、电线等;利用注射成型机配合各种模具,可制成塑料凉鞋、鞋底、拖鞋、玩具、汽车配件等。

2.PVC薄膜。

PVC与添加剂混合、塑化后,利用三辊或四辊压延机可制成规定厚度的透明或有色薄膜。这些压延成型的薄膜可以通过剪裁,热合加工包装袋、雨衣、桌布、窗帘、广告膜、充气玩具等。宽幅的透明薄膜可以供温室、塑料大棚及地膜之用。经双向拉伸的薄膜,所受热收缩的特性,可用于收缩包装。同时。PVC薄膜是最好的三维表面膜制作材料。

3.PVC人造革。

有衬底的人造革是将PVC糊涂敷于布上或纸上,然后在100摄氏度以上塑化而成。也可以先将PVC与助剂压延成薄膜,再与衬底压合而成。无衬底的人造革则是直接由压延机压延成一定厚度的软制薄片,再压上花纹即可。人造革可以用来制作皮箱、皮包、书的封面、沙发及汽车的坐垫等,还有地板革,用作建筑物的铺地材料。

4.PVC泡沫制品。

软质PVC混炼时,加入适量的发泡剂做成片材,经发泡成型为泡沫塑料,可作泡沫拖鞋、凉鞋、鞋垫、及防震缓冲包装材料。也可用挤出机基础成低发泡PVC板材和异型材,可替代木材试用,是一种新型的建筑才材料。

5.PVC透明片材。

PVC中加冲击改性剂和有机锡稳定剂,经混合、塑化、压延而成为透明的片材。利用热成型可以做成薄壁透明容器或用于真空吸塑包装,是优良的包装材料和装饰材料。

6.PVC硬板和板材。

PVC中加入稳定剂、润滑剂和填料,经混炼后,用挤出机可挤出各种口径的硬管、异型管、波纹管,用作下水管、饮水管、电线套管或楼梯扶手。将压延好的薄片重叠热压,可制成各种厚度的硬质板材。板材可以切割成所需的形状,然后利用PVC焊条用热空气焊接成各种耐化学腐蚀的贮槽、风道及容器等。

7.PVC其它用途。

门窗有硬质异型材料组装而成。在有些国家已与木门窗铝窗等共同占据门窗的市场;仿木材料、代钢建材(北方、海边);中空容器;一次性医疗器械产品

甲烷分子中两个氢原子被氯取代而生成的化合物,分子式CH2Cl2。二氯甲烷是无色、透明、比水重、易挥发的液体,有类似醚的气味和甜味,不燃烧,但与高浓度氧混合后形成爆炸的混合物。二氯甲烷微溶于水,与绝大多数常用的有机溶剂互溶,与其他含氯溶剂、、乙醇也可以任意比例混溶。室温下二氯甲烷难溶于液氨中,能很快溶解在酚、醛、酮、冰醋酸、磷酸三乙酯、甲酰胺、环己胺、乙酰乙酸乙酯中。纯二氯甲烷无闪点,含等体积的二氯甲烷和汽油、溶剂石脑油或甲苯的溶剂混合物是不易燃的,然而当二氯甲烷与丙酮或甲醇液体以 10 :1 比例混合时,其混合特具有闪点,蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷是甲烷氯化物中毒性最小的,其毒性仅为四氯化碳毒性的 0.11% 。如果二氯甲烷直接溅入眼中,有疼痛感并有腐蚀作用。二氯甲烷的蒸汽有作用。当发生严惩的中毒危险时应立即脱离接触并移至新鲜空气处,一些中毒症状就会得到缓解或消失,不会引起持久性的损害。

二氯甲烷-物化性质

外观与性状:无色透明易挥发液体。具有类似醚的刺激性气味 沸点:39.8℃ 蒸汽压:30.55kPa(10℃) 熔 点:-95.1℃ 相对密度:1.3266(20/4℃) 水溶性:20 G/L (20 ?C) 自燃点:640℃。 粘度(20℃):0.43mPa?s。 折射率nD(20℃):1.4244。 临界温度:237℃, 临界压力:6.0795MPa。

溶解性:溶于约50倍的水,溶于酚、醛、酮、冰醋酸、磷酸三乙酯、乙酰乙酸乙酯、环己胺。与其他氯代烃溶剂乙醇、和N,N-二甲基甲酰胺混溶。

热解后产生HCl和痕量的光气,与水长期加热,生成甲醛和HCl。进一步氯化,可得CHCl3和CCl4。无色易挥发液体。难燃烧。蒸气与空气形成爆炸性混合物,爆炸极限6.2%~15.0%(体积)。二氯甲烷与氢氧化钠作用生成甲醛。工业中,二氯甲烷由天然气与氯气反应制得,经过精馏得到纯品,是优良的有机溶剂,常用来代替易燃的石油醚、等,并可用作牙科局部剂、制冷剂和灭火剂等。对皮肤和粘膜的刺激性比氯仿稍强,使用高浓度二氯甲烷时应注意。

安定性:在一般温度(常温)下没有湿气时,二氯甲烷比其同类物质(氯仿及四氯化碳)稳定。

危害分解性:长期与水接触会缓慢分解产生氯化氢。

危害之聚合:不会发生。

反应性及不相容性:

1.一般金属:於室温下使其少许的分解。

2.当受相当於或少於 25 克**的震荡时,二氯甲烷与四氧化二氮的混合物具有爆炸性。

3.与锂的碎片混合,对震荡很敏感且会爆炸,有时爆炸程度相当剧烈。

4.如果空气中含有高浓度的氧气,或在液态氧中,以及在四氧化氮中有钾、钠、钾-钠合金,种种状况下都会形成爆炸性混合物。

5.硝酸:形成爆炸性产物。

6.强氧化剂:可能起爆炸性反应。

7.强酸:可能起爆炸性反应。

8.铁、某些不锈钢、铜及镍:高温及水存在下会腐蚀此类金属。

9.铝粉:於适当压力,95℃下会产生无法控制的放热反应。

10.胺类:放热反应。

11.会与下列化合物激烈反应:胺类、锂、硝酸、钾化钠、、、、、

12.塑胶、橡皮、和一些涂料表层会被分解。

13.有可能聚集静电荷而引发蒸汽爆炸。

二氯甲烷-用途

二氯甲烷具有溶解能力强和毒性低的优点,大量用于制造安全**胶片、聚碳酸酯,其余用作涂料溶剂、金属脱脂剂,气烟雾喷射剂、聚氨酯发泡剂、脱模剂、脱漆剂。

二氯甲烷为无色液体,在制药工业中做反应介质,用于制备氨苄青霉素、羟苄青霉素和先锋霉素等;还用作胶片生产中的溶剂、石油脱蜡溶剂、气溶胶推进剂、有机合成萃取剂、聚氨酯等泡沫塑料生产用发泡剂和金属清洗剂等。

二氯甲烷在中国主要用于胶片生产和医药领域。其中用于胶片生产的消费量占总消费量的50%,医药方面占总消费量的20%,清洗剂及化工行业消费量占总消费量的20%,其他方面占10%。

二氯甲烷-危害

环境影响

该物质对环境可能有危害,在地下水中有蓄积作用。对水生生物应给特别注意。还应注意对大气的污染。

健康危害

侵入途径:吸入、食入、经皮吸收。

健康危害:本品有作用,主要损害中枢神经和呼吸系统。人类接触的主要途径是吸入。已经测得,在室内的生产环境中,当使用二氯甲烷作除漆剂时,有高浓度的二氯甲烷存在。一般人群通过周围空气、饮用水和食品的接触,剂量要低得多。据估计,在二氯甲烷的世界产量中,大约80%被释放到大气中去,但是由于该化合物光解的速率很快,使之不可能在大气中蓄积。其初始降解产物为光气和一氧化碳,进而再转变成二氧化碳和盐酸。当二氯甲烷存在于地表水中时,其大部分将蒸发。有氧存在时,则易于生物降解,因而生物蓄积似乎不大可能。但对其在土壤中的行为尚须测定。

健康危害效应:

急性:1.鼻子及喉咙的轻微刺激。

2.於500~1,000 ppm 1~2小时可能会导致中枢神经系统的轻度抑制,如:头晕、头昏眼花、恶心、手脚麻木、疲劳,无法集中精神及协调性减低。

3.非常高浓度暴露可能导致丧失意识及死亡。

皮肤:1.液体会刺激皮肤。

2.如流入手套内、鞋内或紧的衣内可能会严重刺激。

眼睛:1.液体及高浓度蒸气可能造成刺激。

2.液体可能导致角膜的短暂刺激。

食入:1.於动物实验中,二氯甲烷会被迅速吸收入体内造成中度毒性,症状如吸入。

慢性:1.吸入:於非常高浓度会造成肝及肾的损伤。亦有报告指出一再暴露於500~3,600 ppm会造成脑损伤。

2.致癌性:三研究指出长期暴露的工人并无癌症增多的迹象,但IARC将其列为疑似致癌物

氟利昂几种氟氯代甲烷和氟氯代乙烷的总称,主要是含氟和氯的烷烃衍生物,少数是环烷烃卤素衍生物,有的还含有溴原子。包括CCl3F(F-11)、CCl2F2(F-12)、CClF3(F-13)、CHCl2F(F-21)、CHClF2(F-22)、FCl2C-CClF2(F-113)、F2ClC-CClF2(F-114)、C2H4F2(F-152)、C2ClF5(F-115)、C2H3F3(F143)等等。以上氟里昂在常温下都是无色气体或易挥发液体,略有香味,低毒,化学性质稳定。其中最重要的是二氯二氟甲烷CCl2F2(F-12)。二氯二氟甲烷在常温常压下为无色气体;熔点-158℃,沸点-29.8℃,密度1.486克/厘米(-30℃);稍溶于水,易溶于乙醇、;与酸、碱不反应。二氯二氟甲烷可由四氯化碳与无水氟化氢在催化剂存在下反应制得,反应产物主要是二氯二氟甲烷,还有CCl3F和CClF3,可通过分馏将CCl2F2分离出来。

氟利昂-用途

由于氟利昂化学性质稳定,具有不燃、无毒、介电常数低、临界温度高、易液化等特性,因而广泛用作冷冻设备和空气调节装置的制冷剂。

氟利昂制冷剂

氟里昂制冷剂大致分为3类。

一是氯氟烃类产品,简称CFC。主要包括R11、R12、R113、R114、R115、R500、R502等,由于对臭氧层的破坏作用以及最大,被《蒙特利尔议定书》列为一类受控物质。

二是氢氯氟烃类产品,简称HCFC。主要包括R22、R123、R141b、R142b等,臭氧层破坏系数仅仅是R11的百分之几,因此,目前HCFC类物质被视为CFC类物质的最重要的过渡性替代物质。在《蒙特利尔议定书》中R22被限定2020年淘汰,R123被限定2030年。

三是氢氟烃类:简称HFC。主要包括R134A、R125、R32、R407C、R410A、R152等,臭氧层破坏系数为0,但是气候变暖潜能值很高。在《蒙特利尔议定书》没有规定其使用期限,在《联合国气候变化框架公约》京都议定书中定性为温室气体。

专家表示:我们目前所使用的所有制冷剂全部都是氟里昂制品,非氟里昂制冷剂到目前为止还没有研发出来。明令禁止的是第一类氯氟烃类产品,对于氢氯氟烃类产品和氢氟烃类制冷剂,还要有相当长的一段使用时间。所以,消费者千万不要谈“氟”色变。

此外,也大量用作雾化剂的组分,但由于它可能破坏大气臭氧层,现已限制使用。氟利昂的另一重要应用是作聚氨酯、聚苯乙烯和聚乙烯等泡沫塑料的发泡剂。R-113、R-11与其他溶剂的混合物还广泛用于电子工业和航空工业中作为溶剂,在纺织工业中用作纺织染整助剂(如整理油剂和洗涤剂)。氟利昂还是生产氟树脂的原料。由R-22可以生产四氟乙烯;由R-113可以生产三氟氯乙烯。三氟溴甲烷和1,1,2,2-四氟-1,2-二溴乙烷是效果良好的灭火剂,1,1,1-三氟-二氯-二溴乙烷可作为剂

氟利昂-危害

氟里昂是臭氧层破坏的元凶,它是本世纪20年代合成的,其化学性质稳定,不具有可燃性和毒性,被当作制冷剂、发泡剂和清洗剂,广泛用于家用电器、泡沫塑料、日用化学品、汽车、消防器材等领域。80年代后期,氟利昂的生产达到了高峰,产量达到了144万吨。在对氟利昂实行控制之前,全世界向大气中排放的氟利昂已达到了2000万吨。由于它们在大气中的平均寿命达数百年,所以排放的大部分仍留在大气层中,其中大部分仍然停留在对流层,一小部分升入平流层。在对流层相当稳定的氟利昂,在上升进入平流层后,在一定的气象条件下,会在强烈紫外线的作用下被分解,分解释放出的氯原子同臭氧会发生连锁反应,不断破坏臭氧分子。科学家估计一个氯原子可以破坏数万个臭氧分根据资料,2003年臭氧空洞面积已达2500万平方公里。臭氧层被大量损耗后,吸收紫外线辐射的能力大大减弱,导致到达地球表面的紫外线B明显增加,给人类健康和生态环境带来多方面的危害。据分析,平流层臭氧减少1%%,全球白内障的发病率将增加0.6-0.8%,即意味着因此引起失明的人数将增加1万到1.5万人。

由于氟里昂在大气中的平均寿命达数百年,所以排放的大部分仍滞留在大气层中,其中大部分停留在对流层,小部分升入平流层。

在对流层的氟里昂分子很稳定,几乎不发生化学反应。但是,当它们上升到平流层后,会在强烈紫外线的作用下被分解,含氯的氟里昂分子会离解出氯原子,然后同臭氧发生连锁反应(氯原子与臭氧分子反应,生成氧气分子和一氧化氯基;一氧化氯基不稳定,很快又变回氯原子,氯原子又与臭氧反应生成氧气和一氧化氯基……),不断破坏臭氧分子。

物质:四氟乙烯

化学品英文名称:tetrafluoroethylene

中文名称2:全氟乙烯

英文名称2:TFE 分子式:C2F4 分子量:100.01 CAS号:116-14-3

性质:无色无臭气体。熔点-142.5℃,沸点-76.3℃,不溶于水。比空气重。相对密度1.519,临界温度33.3℃,临界压力3.92MPa,燃点620℃。溶于丙酮、乙醇。自燃极限为11%-60%(体积),引燃温度只有180℃。有氧存在时,易形成不稳定易爆炸的过氧化物。 制备方法:二氟一氯甲烷经气化、预热、通入裂解炉,热裂解产含四氟乙烯单体的裂化气,经水洗、碱洗、压缩、冷冻脱水、干燥,分馏等工序,最后精馏得成品。

用途:制造聚四氟乙烯及其他氟塑料、氟橡胶和全氟丙烯的单体。可用作制造新型的热塑料、工程塑料、耐油耐低温橡胶、新型灭火剂和抑雾剂的原料。

健康危害:急性中毒:轻者有咳嗽、胸闷、头晕、乏力、恶心等;较重者出现化学性肺炎或间质型肺水肿;严重者出现肺水肿及心肌损害。吸入有机氟聚合物热解物后,可引起氟聚合物烟尘热。慢性中毒:常见有头痛、头晕、乏力、睡眠障碍等神经衰弱综合征和(或)腰背酸痛症状。可致骨骼损害。 环境危害:对大气可造成污染。 燃爆危险:本品易燃。

主要成分: 纯品 外观与性状: 无色液体,有氯仿样气味。 熔点(℃): -22.2 (有报道-22.35;-22.7) 沸点(℃): 121.2 相对密度(水=1):(20℃/4℃)1.6226 相对蒸气密度(空气=1): 5.83 饱和蒸气压(kPa): 2.11(20℃) 燃烧热(kJ/mol): 679.3 临界温度(℃): 347.1 临界压力(MPa): 9.74 折射率1.50566 辛醇/水分配系数的对数值: 2.88 溶解性: 不溶于水(溶于约10000倍体积的水),可混溶于乙醇、等多数有机溶剂。

主要用途

用作溶剂。

危险品信息

健康危害本品有刺激和作用。吸入急性中毒者有上呼吸道刺激症状、流泪、流涎。随之出现头晕、头痛、恶心、运动失调及酒醉样症状。口服后出现头晕、头痛、倦睡、恶心、呕吐、腹痛、视力模糊、四肢麻木,甚至出现兴奋不安、抽搐乃至昏迷,可致死。慢性影响:有乏力、眩晕、恶心、酩酊感等。可有肝损害。皮肤反复接触,可致皮炎和。

燃爆危害本品可燃,有毒,具刺激性。

七氟丙烷

性质:无色的无气味气体,微溶于水

用途:灭火剂的原料,发射火箭的湿剂,配药测量的药量吸入器

危害:

四氯化碳为无色澄清易流动的液体,工业上有时因含杂质呈微**,具有芳香气味,易挥发。密度(20℃)1.595克/立方厘米、熔点-22.8℃,沸点76~77℃。 四氯化碳的蒸气较空气重约5倍,且不会燃烧。四氯化碳的蒸气有毒,它的性较氯仿为低,但毒性较高。吸入人体2~4毫升就可使人死亡。 四氯化碳在水中的溶解度很小,且遇湿气及光即逐渐分解生成盐酸。易溶于各种有机溶剂,能与醇、醚、氯仿、苯等任意混合。对于脂肪、油类及多种有机化合物为一极优良的溶剂。

四氯化碳用作灭火剂时,不能灭活泼金属的火,因为活泼金属可以与之反应

DDT又叫滴滴涕,二二三,化学名为双对氯苯基三氯乙烷(Dichlorodiphenyltrichloroethane),化学式(ClC6H4)2CH(CCl3)。中文名称从英文缩写DDT而来,为白色晶体,不溶于水,溶于煤油,可制成乳剂,是有效的杀虫剂。为20世纪上半叶防止农业病虫害,减轻疟疾伤寒等蚊蝇传播的疾病危害起到了不小的作用。

轻度中毒可出现头痛、头晕、无力、出汗、失眠、恶心、呕吐,偶有手及手指肌肉抽动震颤等症状。重度中毒常伴发高烧、多汗、呕吐、腹泻;神经系统兴奋,上、下肢和面部肌肉呈强直性抽搐,并有癫痫样抽搐、惊厥发作;出现呼吸障碍、呼吸困难、紫绀、有时有肺水肿,甚至呼吸衰竭;对肝肾脏器损害,使肝肿大,肝功能改变;少尿、无尿、尿中有蛋白、红细胞等;对皮肤刺激可发生红肿、灼烧感、瘙痒,还可有皮炎发生,如溅入眼内,可使眼暂性失明。DDT一般毒性与六六六相同,属神经及实质脏器毒物,对人和大多数其它生物体具有中等强度的急性毒性。它能经皮肤吸收,是接触中毒的典型代表,由于其在常压时即使在12℃以下,也有一定的蒸发,所以吸入DDT蒸气亦能引起中毒。对人不论是故意的或是过失造成大量服用时,即能引起中毒

三次发现石油效用都有哪些作用?

开拓石油化学加工

在有史以前,人们已经发现并利用石油了。考古学家们在现今伊拉克幼发拉底河两岸五千多年前的古建筑中发现有石油沥青砂浆的迹象。

”是古“燃”字。这就是说,我国早在1世纪以前已经发现洧水上有石油,可以燃烧。

但是,长期以来,石油只是直接作为燃料和照明用,会冒出浓厚的黑烟,还会产生强烈的刺鼻臭味。

到19世纪50年代,1855年美国耶鲁大学化学教授小西尼曼(Benjamin Silliman Jr。,1816-1855)研究分析了石油的组分,确定石油是多种烃的混合物。

烃音tīng,是碳(tàn)和氢(qīng)的切音,说明它是碳和氢的化合物。这是我国化学家们创造的具有中国特色的化学名词。

甲烷(CH4)、乙烯(C2H4)、乙炔(C2H2)是三种最简单的烃,都是链烃,因为它们具有链状结构,以区别于具有环状结构的环烃。它们的命名同样具有中国特色。

甲、乙、丙、丁、戊、己、庚、辛、壬、癸称为天干,又称十干。天干和地支(子、丑、寅……)自古代起表示年、月、日和时的次序,周而复始,循环使用,我国的化学家们用来表示链烃中的碳原子数。“烷”表示“完整”,碳是4价的,1个碳原子与4个氢原子结合;“烯”表示“稀少”,“炔”表示“缺乏”。三者都用“火”旁,表示它们都能燃烧。

链烃又可分为直链链烃和带支链链烃。例如正庚烷表示含有7个碳原子的烷烃,它是直链的链烃,分子结构是:

异辛烷是辛烷的同分异构体,表示含有8个碳原子的烷烃,它们的分子式都是C8H18,但结构式不同。异辛烷是带有支链的链烃,又称2,2,4—三甲基戊烷,表示它是含有5个碳原子的烷烃,同时这5个碳原子从左向右数分别编号为1、2、3、4、5,在2、2、4位置上连接着含有1个碳原子和3个氢原子的三个甲基(—CH3)。

苯(C6H6)、甲苯(C6H5CH3)等分子结构中碳原子连接成环,所以又称环烃:

有机化合物就是按分子结构分为链状化合物和环状化合物两大类,链状化合物也叫做脂肪族化合物。环状化合物可分为三类:第一类是芳香族化合物(27),第二类是杂环化合物(27),第三类是脂环族化合物。例如环己烷(C6H12),它的分子结构中没有双键或三键,是饱和的化合物。因此环烃又有芳(香)环烃和脂(肪)环烃的区分。

烃又可分为饱和烃和不饱和烃两大类。烷烃就是饱和烃,它们的通式是CnH2n+2,烯烃和炔烃都是不饱和烃,它们的通式分别是CnH2n和CnHn。

石油是多种烃的混合物,就是说石油既含有链烃,也含有环烃;既含有直链链烃,也含有带支链链烃;既含有脂环烃,也含有芳环烃;既含有饱和烃,也含有不饱和烃。

1859年美国人德拉克(Edwin L.Drake)首先在美国宾夕法尼亚(Pennsylvania)州蒂图斯维尔(Titusville)钻井油,并将得的石油进行分馏。他将馏出温度在40~60℃、其中含有5~6个碳原子烃的馏分称为石脑油,用作溶剂;馏出温度在55~200℃、其中含有6~12个碳原子烃的馏分称为汽油,没有得到应用;馏出温度在195~300℃、其中含有12~16个碳原子烃的馏分称为煤油,供照明用;馏出温度在285~350℃、其中含15~18个碳原子烃的馏分称为柴油,作为发动机的燃料;馏出温度在350℃以上、其中含有18个以上碳原子的馏分称为重油,用作润滑剂;残渣沥青用作涂敷屋顶防水。

南京大学化学系。有机化学(上册)。北京:人民教育出版社,18。

利用石油的馏分供点燃照明用,仍会产生强烈刺鼻臭味,这是由于石油中含有的硫在燃烧中产生二氧化硫(SO2)气体。大约在1887年,美国标准石油公司(Standard oil Co。)化学师弗拉施(Herman Frasch,1851-1914)利用铜、铅、铁等金属氧化物使石油的硫变成硫化物沉淀,回收后重新转变成氧化物。后来他又利用浓硫酸作氧化剂,使石油含有的一些具有臭味的硫化物氧化成磺酸(R-SO3H),形成酸渣,用离心分离法或静置法分离出去。这可以认为是石油化学加工的第一回合。

可是,一直到19世纪末,汽油都没有得到充分利用,原因是它的着火点低,又容易挥发,不仅是一遇火就着,而且是烧成一片,甚至发生爆炸,被人们看作是危险的“废料”,不知如何处理。

到19世纪末,内燃机和汽车相继问世。与内燃机相比,蒸汽机是烧开锅炉里的水,产生蒸汽,再把蒸汽引进汽缸里,推动活塞工作,所以可以叫做“外燃机”。而内燃机是将燃料放在汽缸内燃烧,使燃烧产生的气体推动活塞工作。内燃机需要容易燃烧的液体燃料,汽油正好符合要求,当内燃机装进汽车后,汽油的身价随即上涨。

但问题又出现了,汽油的蒸气与空气的混合物在汽缸中燃烧时,一部分汽油往往在发火前就发生爆炸性的燃烧,从而出现爆震现象。爆震不仅造成能量的浪费,更使内燃机的汽缸受到损害。经过各种试验,明确爆震程度的大小与所用汽油的成分有关。一般说来,直链烷烃在燃烧时所产生的爆震程度最大,烯烃和脂环烃较次,芳香烃和带有很多支链的烷烃所产生的爆震程度最小。在含有7~8个碳原子的汽油成分中,以正庚烷的爆震程度最大,而异辛烷(2,2,4—三甲基戊烷)则基本上不产生爆震。

汽油的辛烷值是衡量汽油爆震程度的尺度。辛烷值是以正庚烷和异辛烷作为标准,规定正庚烷的辛烷值为0,异辛烷的辛烷值为100。在正庚烷和异辛烷的混合物中,含异辛烷的体积分数叫做这种混合物的辛烷值,也就是通常所说的汽油牌号。

各种汽油的辛烷值或汽油牌号,是把它们在燃烧时发生爆震现象的程度与上述混合物比较得到的,例如某汽油的辛烷值是80,或80号汽油,就是说这种汽油在一种标准的单汽缸内燃机中燃烧时所产生的爆震现象,与由20%(体积分数)正庚烷和80%异辛烷的混合物在同一汽缸中燃烧时所产生的爆震程度相同。普通汽油并不是正庚烷和异辛烷的简单混合物,所以辛烷值只能表示它的爆震程度的大小,并不表示异辛烷在其中的含量。

石油分馏所得汽油随原油不同,辛烷值大约在20~70之间,不能满足汽车、飞机燃料的要求。

第一次世界大战后不久,美国通用汽油公司的实验室里进行着许多物质的筛选研究,试图找到一种物质,把它添加到汽油里,降低汽油燃烧的爆震程度。美国工业化学家米奇利(Thomas Midgley,1889-1944)和波伊德(T.A.Boyd)找到四乙基铅(Pb(C2H5)4),于1921年投入使用,能降低汽油燃烧时的爆震,称为抗爆剂。但后来发现四乙基铅在汽缸里燃烧后会生成氧化铅,堆集在汽缸里,造成障碍。于是又添加二溴乙烷((CH2)2Br2)和二氯乙烷((CH2)2Cl2),它们在燃烧时能与四乙基铅发生化学反应,把生成的物质一起排出。

在排出的气体中含有溴化铅(PbBr2),它在日光照射下会分解,产生铅和溴,污染空气和环境,这使创造使用四乙基铅的人员陷入困惑。美国从1995年起已禁用含铅汽油。我国北京市从1998年1月起也禁止使用含铅汽油,随后全国禁用。

汽油中添加抗爆剂可以认为是石油化学加工的第二个回合。

第三个回合就是石油的裂化和裂解。

石油的裂化和裂解都是利用加热使石油中含碳原子较多的烃,如柴油或汽油以上的其他高沸点馏分,分解成含碳原子较少的烃。这些含碳原子较多的分子在受热过程中,不但碳链发生断裂,产生含碳原子较少的分子,同时还有脱氢、聚合、环化、异构化等反应发生,使产物中含有相当量的烯烃、芳烃和带有支链的烷烃。这些成分都具有较高的辛烷值,因此石油的加热分解不仅增加了汽油的产量,而且得到质量较好的汽油,这是应需求而产生的。一般从石油分馏得到的汽油叫做直馏汽油。直馏汽油无论在质量和数量方面来说,都不能满足现代工业发展的要求,因为直馏汽油产率仅相当于原油质量的16%,其辛烷值一般在20~70之间。裂化石油产品不但能从同质量的原油中增产三倍以上的汽油,同时能增强抗爆震性能,所以从20世纪初期起,石油产品的裂化加工就飞速发展起来。

石油的裂解和裂化的区别在于反应温度。裂化温度一般不超过500℃,得到的烃主要是液态的,也有一些气体产生;裂解温度一般在700℃以上,到1000℃或更高,得到大量气体产物,附带也有一些液体产物。

这是多位科学技术人员开拓发展起来的。

美国化学家伯顿(William Meriam Burton,1865-1954)从1909年开始研究石油裂解,最初是在气相和大气压下进行,产量很低,曾试用氯化铝等催化剂,效果也差,两年后研究在液相、350~450℃和5个大气压下进行,从原油中分馏出的汽油高达60%,1913年首先用“石油的裂化方法”取得专利。1915年汽油价格下跌,该方法为美国在第一次世界大战期间汽油的供应作出贡献,1921年获美国化学工业协会帕金奖章。

Charies G.Moseley。,Chemistry and the first great gasoline shortage.Journal of chemical education,1986,57(4)。

1915年俄罗斯化学家泽林斯基(Hикoлaй митpиeвич Зeлинcкий,1861-1953)提出利用三氯化铅作为石油裂化的催化剂。

1927年美籍法国机械工程师霍德里(Eugene Houdry,1892-1962)利用氧化硅—氧化铅作催化剂裂解石油。他发现在裂解过程中产生的炭粒覆盖在催化剂表面,降低了催化剂的活性,于是他将空气导入反应器中,使炭粒燃烧,既清除了炭粒,又成为反应过程所需的热源。

Charies G.Moseley.Engene houdry,catalytic craching,and world warⅡ iation gasoline,Journal of chemical education,,61(8)。

1931年美籍俄罗斯化学家伊帕季耶夫首先使用高温催化裂化石油。

随着石油裂化和裂解的发展,又出现重整、烷基化等石油加工工艺。

重整即重新整理的意思,是将直链烃类重新整理,使之成为带支链的烃和环烃,需要用铂或铼等催化剂,又名铂重整,以提高产品的辛烷值。

烷基化是将烷基加到烃分子上以提高辛烷值。

四氟二溴乙烷有什么用?

石油是动植物遗体在地壳中经过复杂的变化而形成的。考古学家们在现今伊拉克幼发拉底河两岸五千多年的古建筑中,发现有利用石油沥青、沙浆的迹象。

我国东汉著名史学家班固(公元32~92年)编著的《汉书》中记载着:“高奴有洧水可然。”高奴在今天的陕西省延长县一带。洧(wěi)水是延河的一条支流。“然”是古代的“燃”字。这就是说,我国早在公元1世纪以前就已经发现洧水上有石油,可以燃烧。

但是长期以来,不论是我国,还是其他文明古国,在发现石油后只是直接用做燃料或照明,它冒出浓厚的黑烟,还产生强烈刺鼻的嗅味。

大约到19世纪初,人们才开始认识从石油中蒸馏出煤油,用做燃料和照明,可以减少黑烟和不愉快的嗅味。1823年,俄罗斯农民B·杜比宁和他的两个兄弟在北高加索地区盛产石油的格罗兹尼附近首先建成蒸馏石油提取煤油的装置。

1855年,美国耶鲁大学化学教授西利曼通过分析石油的化学成分,确定石油是多种碳氢化合物的混合物,开始将石油蒸馏,获得50%类似煤焦的产物,供照明用。1859年德雷克首先在美国宾夕法尼亚州蒂图斯维尔钻井油,它不再是等待石油慢慢聚集到地面上来收集了。当时石油被用做外科药剂。医治“百病”。只是经过了一段时期后,美国匹兹堡一位销售石油的商人基尔接受一位化学家的劝告,按照分馏酒和水的方式分馏石油。最初只是得到含5~8个碳原子的碳氢化合物石脑油,即溶剂油、汽油。后来分馏出含9~18个碳原子的煤油,其余馏分是润滑油,用做润滑剂,残渣沥青用作涂敷屋顶防渗漏。从润滑油中又逐渐分馏出柴油、润滑油、凡士林等,并将煤油用硫酸、碱处理以脱色除嗅用于照明。这大约已到19世纪末。

从石油中提取煤油供照明用是第一次发现石油的效用。

这时汽油却没有得到充分的利用,因为它的着火点低,又容易挥发,不仅是一遇火就着,而且是烧成一片,甚至会发生爆炸。因而当时人们视它为危险的“废料”,不知如何处理。

到19世纪末,内燃机和汽车相继问世。内燃机和蒸气机不同。蒸气机是用燃料烧开锅炉里的水,产生蒸气,再把蒸气引进汽缸里,推动活塞工作,内燃机是将燃料引进汽缸里燃烧,使燃烧产生的气体推动活塞工作。内燃机需要易燃的液体作燃料,汽油正好符合它的要求。当内燃机安装在车上成为汽车后,汽车迅猛发展起来,接着飞机、汽艇等相继出现,汽油变“废”为宝了。

这是第二次发现石油的效用。

电灯出现后,煤油的需要量大减。这就又促使人们尽快研究能否从石油中提取更多汽油,减少煤油产量。

化学家和工程师们设想,既然汽油是含碳原子较少的碳氢化合物,而煤油是含碳原y-较多的碳氢化合物,能不能将含碳原子较多的分解成较少的呢?

到20世纪初,这种设想开始变成现实了。美国标准石油公司化学家伯顿从1910年开始研究。1913年取得专利。他将石油放进锅里加热,使煤油在一定压力下分裂成较小的分子,煤油变成了汽油。现在这个过程叫做裂化。本来从10吨石油里只能得到1吨左右的汽油,用裂化方法后汽油的产量增加了。

把石油中含碳原子较多的碳氢化合物裂化成含碳原子较小的碳氢化合物过程是石油的化学加工过程,不同于石油的分馏,后者是石油的物理加工。

随着汽车和飞机的高速发展,出现了大型客机和超音速喷气式飞机,汽油需求量不断增加,不仅要把煤油裂化成汽油,更希望从整个石油中提取出更多分量的汽油,同时对汽油的质量也提出了更高的要求。

汽油的蒸气与空气的混合物在内燃机的汽缸中燃烧时往往在发火前就进行爆炸性的燃烧,因而引起爆震现象。这不仅造成能量的浪费,而且也损害内燃机的汽缸。经过化学家们试验,知道爆震程度的大小与所用汽油的成分有关。一般说来,直链烷烃在燃烧时发生的爆震程度最大,环状烃和带有很多支链的烷烃发生的爆震程度最小。在含有7~8个碳原子的汽油成分中,以正庚烷的爆震程度最大,而异辛烷基本上不发生爆震。正庚烷的分子结构是直链的,异辛烷带有支链。

于是制定出辛烷值作为汽油爆震的尺度,以正庚烷和异辛烷作为标准,规定正庚烷的辛烷值为0,异辛烷的辛烷值为100。在正庚烷和异辛烷的混合物中,异辛烷的质量分数叫做这个混合物的辛烷值,也就是通常所说的多少号汽油。

各种汽油的辛烷值,或多少号汽油,是把它们在燃烧时所发生的爆震现象与上述混合物比较得到的。例如,某汽油的辛烷值是80,或80号汽油,就是说这种汽油在一种标准的单个汽缸中燃烧时所发生的爆震现象与由20%(体积分数)正庚烷和80%异辛烷在同一汽缸中燃烧时所发出的爆震程度相同。普通汽油并不是正庚烷和异辛烷的简单混合物,所以辛烷值只表示汽油爆震程度的大小,并不表示异辛烷在其中的含量。

第一次世界大战后不久,美国通用汽油公司的实验室里进行着许多物质的筛选研究,试图找到一种物质,把它添加到汽油里,减低汽油的燃烧爆震。终于在1921年12月9日找到了四乙基铅Pb(C2H5)4这种化合物。据说,当时试验的人员高兴得跳起舞来。

四乙基铅是一种具有强烈气味的无色而有毒的液体,在汽油中加入少量后确实能降低爆震,被称为抗震剂。但后来发现四乙基铅在汽缸里燃烧后会生成氧化铅,堆积在汽缸里,造成障碍。于是又添加二溴乙烷(CH2)2Br2和二氯乙烷(CH2)2Cl2。它们在燃烧时能与四乙基铅发生化学反应,把生成的物质一起排出。

解决汽油在汽缸里燃烧产生的爆震的问题,还有另一种方法。在20世纪20年代,法国一位机械工程师乌德里创造了石油裂解的化学加工方法。

从裂解、裂化得到的副产气体主要是乙烯、丙烯、甲烷、乙烷、丙烷等等。它们是制造聚乙烯、聚氯乙烯、聚丙烯等塑料和人造纤维、人造橡胶、洗衣粉、农药等的原料。它们成为了化工原料。

这是第三次发现石油的效用。

四乙基铅的主要用途

四氟二溴乙烷

别名 氟里昂一114B一2

英文名 Sym-Dibrometetrafluoroethane; Freon

114B—2

分子式 CF2Br-CF2Br

分子量 259.82

性状 液体,低毒,密度2.18克/厘米2(21.1℃),沸

点47.3℃,熔点-112℃。不燃。

来源 四氟乙烯与溴两次加成,经冷凝、中和、精馏、

分离、得产品。

包装 用铁桶包装,每桶净重200公斤。

用途 可作高效灭火剂,还可作冷却剂,高温气体润

滑剂,亦可用于传热介质等。

储运条件 储存于阴凉通风处、避光、避热。

“海洋元素”指什么元素?

四乙基铅一度广泛使用作为添加剂在汽油,以提高燃料的辛烷值,以防止发动机内发生爆震,从而能够使用更高的压缩比率,藉以提高汽车发动机效率和功率。最初使用四乙基铅添加剂的美国,与最初使用酒精作添加剂的欧洲比较。含铅汽油的优点从它的高能量含量和贮藏品质较高表现出来,最终成为了普遍使用的燃料添加剂。其中一个最大的优点,四乙基铅比其他抗爆震剂或使用高辛烷值的汽油混合剂比例比较,仅需要非常低的浓度,就达到提高燃料的辛烷值。典型的制备方法,是以一份的乙基液(内含四乙基铅)加到1260份未经处理的汽油。其他抗爆震剂必须在用较大量的份量和/或比天然汽油的能源值更低。高能源值的含铅汽油会有更大的燃油效率。

当酒精用来作为抗爆剂,会造成燃料吸收水分和空气,高湿度燃油可导致燃料喉管生锈和腐蚀。而四乙基铅是较易溶于汽油,而乙醇则难溶于汽油,且溶解度随燃料湿度增加。随着时间的推移,水滴和积水的水分可以形成在燃油系统的燃料喉管结冰。此外燃料的高湿度也可以出现生物污染问题,由于某些细菌能够在水面和汽油的表面繁殖,从而在燃料系统内造成细菌滋生。四乙基铅的毒性,使其具杀菌特性,有助防止燃油污染和细菌生长而造成燃油降解。此化合物常用于汽车汽油的添加剂,提高辛烷值,作为抗震爆之用,从而延长各零件的寿命。其燃烧会产生固体一氧化铅和铅。固体铅金属与氧化铅会在发动机内迅速积聚,损害发动机内各个零件。

因此会加入1,2-二溴乙烷或1,2-二氯乙烷,令铅反应为可蒸发的溴化铅和氯化铅,但这些物质会造成空气污染,对儿童脑部构成损害,因此油公司开始推出无铅汽油。此外,这种添加剂也会造成催化转换器内的催化剂受污染,催化剂失效会使汽车的催化转换器失去其功能。

百川奔流归大海。陆地上的水溶解着一切可以溶解的物质并汇集到海洋。由于水分的蒸发,海水中聚集的各种元素越来越多。人类已经发现或人工制造的元素109种,海洋中就有80多种。大海真是各种矿藏的宝库啊! 有一种元素,它除了少量存在于井盐苦卤、地下水和盐湖中之外,百分之九十九存在于海洋中,人们叫它为“海洋元素”。这种元素名叫溴。 溴在海水中占0.0065%。换句话说,也就是每吨海水中含有65克溴。这点含量看来似乎是微不足道,可是要知道大海中有13.7亿立方公里的海水,算起来溴的总储量就有一百万亿吨,也是相当可观的了。如今,世界上的澳,80%是从海水中提取的。 提炼溴的工厂建筑在海边。那里,抽水机日夜欢唱,将海水抽入工厂的反应塔内。塔底通入的氯气将溴从海水中置换 出来成为单质的溴液。为了提炼1吨溴液,工厂要处理1.5万吨海水。如果用晒盐后留下的卤水提炼溴,那就较为容易些。 海水在晒盐过程中,水分大量蒸发,各种成分都被浓缩,其中溴的含量可提高一百倍。 在人类已知的非金属元素中,溴是唯一在常温下呈液态的元素,因此它是“氵”旁。常温下,溴是红棕色的液体,很容易挥发,气味十分难闻。“溴”的希腊文原意就是“臭”的意思。 溴液很少直接使用,一般都是应用它的化合物。目前溴的最大用途是将溴与乙烯反应,生成二溴乙烷。二溴乙烷作为抗爆震的添加剂而大量使用在汽油中。汽油中添加了四乙基铅后可以节约30%的汽油。但是燃烧后所产生的氧化铅会沉积在汽缸内或排气孔处。添加二澳乙烷以后,可使氧化铅变成易挥发的溴化铅而被排除。世界上有半数以上的溴用于制二溴乙烷。应当指出的是,这种办法虽然伎汽油节省,汽车开得更快,但是大量的铅化合物排入空气,严重地污染了环境,危害人体健康。四乙基铅与二溴乙烷应当“退休”了。可是由于还未找到它们的“接班人”或者替代办法,所以人们还不得不用它们。现在,全世界都在为解决这个难题而奋战。 溴的蒸气对人体的呼吸道会产生严重的危害;人的皮肤接触到溴液会受到烧灼伤害。可是溴液却是贵重的制药原料。制造金霉素、氯霉素、四环素都少不了溴,甚至连普通消毒用的红药水也以溴作原料。以著名科学家命名的“巴甫洛夫合剂”也含有溴。它由及三种溴化物——溴化钠(NaBr)、溴化钾(KBr)、溴化铵(NH4Br)组成。溴化物对人体的神经有麻痹作用。巴甫洛夫合剂适用于患神经衰弱的病人,起镇静作用。 溴的无机化合物的另一个重要用途是与摄影联系着的。溴化银具有光化学反应,即见光会发生分解。人们利用它的这个特性制成胶卷,用来“捕捉”物体的像。你在摄影留念或者观看**的时候,可不要忘了海洋元素的功劳。

麻烦纳,谢谢!